On the Solutions of Two Diophantine Equations n^{2x} +2^y=z^2 and n^{2x} -2^y=z^2
Main Article Content
Abstract
In this paper, we show that all non-negative integer solutions of the Diophantine equation where
is an odd positive integer, are of the following form
.
All non-negative integer solutions of the Diophantine equation where
is an odd positive integer, are of the following form
.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The Journal of Science and Science Education (JSSE) retain the right of all articles published in JSSE. The coresponding author or the authorized person on behalf of the authors must send the complete Copyright Transfer Form to JSSE before any article get published in JSSE.
Copyright Transfer Form
The JSSE request the coresponding author or the authorized person on behalf of the authors upload the manuscript under the together with the Copyright Transfer Form under the supplementary data. The guidline for uploading both manuscript and Copyright Transfer Form is shown below:
1. Upload the manuscript in the sub-menu, Article Component > Article Text.
2. Upload the the Copyright Transfer Form in the sub-menu, Article Component > Other.
Download Copyright Transfer Form
References
Acu, D. (2007). On a Diophantine equation 〖 2〗^x+5^y=z^2. General Mathematics, 15(4), 145-148.
Anbuselvi, R. and Sivasankari, J. (2019). Applications of Diophantine equations in chemical equations. Journal of Emerging Technologies and Innovative Research, 6(6), 371-373.
Burshtein, N. (2018a). On the Diophantine equation〖 2〗^(2x+1)+7^y=z^2. Annals of Pure and Applied Mathematics, 16(1), 177-179. doi: 10.22457/apam.v16n1a19
Burshtein, N. (2018b). Solutions of the Diophantine equation 〖 2〗^x+p^y=z^2 when p is prime. Annals of Pure and Applied Mathematics, 16(2), 471-477. doi: 10.22457/apam.v16n2a25
Chotchaisthit, S. (2012). On the Diophantine equation 〖 4〗^x+p^y=z^2 where p is a prime number. American. Jr. of Mathematics and Sciences, 1(1), 191-193.
Chotchaisthit, S. (2013). On the Diophantine equation〖 2〗^x+11^y=z^2. Maejo International Journal of Science and Technology, 7(2), 291-293.
Dhurga, C.K. (2021). A linear Diophantine equation and its real life applications. Advances and Applications in Mathematical Sciences, 20(8), 1389-1394.
Kaur, D. and Sambhor, M. (2017). Diophantine equations and its applications in real life. International Journal of Mathematics and its applications, 5(2), 217-222.
Khan, M.A.A., Rashid, A. and Uddin, M.S. (2016). Non-negative integer solutions of two Diophantine equations 〖 2〗^x+9^y=z^2 and〖 5〗^x+9^y=z^2. Journal of Applied Mathematics and Physics, 4, 762-765. doi: 10.4236//jamp.2016.44086
Mihailescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewante Mathematik, 27, 167-195.
Puangjumpa, P. (2016). Possible solution of the Diophantine equation〖 2〗^x+47^y=z^2. Academic Journal URU, 11(3S), 36-42.
Qi, L. and Li, X. (2015). The Diophantine equation〖 8〗^x+p^y=z^2. The Scientific World Journal, Article ID 306590, 3 pages. doi: 10.1155/2015/306590
Rabago, J.F.T. (2016). On the Diophantine equation〖 2〗^x+17^y=z^2. Journal of the Indonesian Mathematical Society, 22(2), 177-181.
Sroysang, B. (2013). More on the Diophantine equation〖 2〗^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), 133-137. doi: 10.12732/ijpam.v84i2.11
Suvarnamani, A., Singta, A. and Chotchaisthit, S. (2011). On two Diophantine equations 〖 4〗^x+7^y=z^2 and 〖 4〗^x+11^y=z^2. Science and Technology RMUTT Journal, 1(1), 25-28.
Tanakan, S. (2014). On the Diophantine equation〖 19〗^x+2^y=z^2. International Journal of Contemporary Mathematical Sciences, 9(4), 159-162. doi: 10.12988/ijcms.2014.418
Chotchaisthit, S. (2012). On the Diophantine equation 4^x+p^y=z^2 where p is a prime number. American. Jr. of Mathematics and Sciences, 1(1), 191-193.
Chotchaisthit, S. (2013). On the Diophantine equation 2^x+11^y=z^2. Maejo International Journal of Science and Technology, 7(2), 291-293.
Dhurga, C.K. (2021). A linear Diophantine equation and its real life applications. Advances and Applications in Mathematical Sciences, 20(8), 1389-1394.
Kaur, D. & Sambhor, M. (2017). Diophantine equations and its applications in real life. International Journal of Mathematics and its applications, 5(2), 217-222.
Khan, M.A.A., Rashid, A. & Uddin, M.S. (2016). Non-negative integer solutions of two Diophantine equations 2^x+9^y=z^2 and 5^x+9^y=z^2. Journal of Applied Mathematics and Physics, 4, 762-765. doi: 10.4236//jamp.2016.44086
Mihailescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. Journal für die Reine und Angewante Mathematik, 27, 167-195.
Puangjumpa, P. (2016). Possible solution of the Diophantine equation 2^x+47^y=z^2. Academic Journal URU, 11(3S), 36-42.
Qi, L. & Li, X. (2015). The Diophantine equation 8^x+p^y=z^2. The Scientific World Journal, Article ID 306590, 3 pages. doi: 10.1155/2015/306590
Rabago, J.F.T. (2016). On the Diophantine equation 2^x+17^y=z^2. Journal of the Indonesian Mathematical Society, 22(2), 177-181.
Sroysang, B. (2013). More on the Diophantine equation 2^x+3^y=z^2. International Journal of Pure and Applied Mathematics, 84(2), 133-137. doi: 10.12732/ijpam.v84i2.11
Suvarnamani, A., Singta, A., & Chotchaisthit, S. (2011). On two Diophantine equations 4^x+7^y=z^2 and 4^x+11^y=z^2. Science and Technology RMUTT Journal, 1(1), 25-28.
Tanakan, S. (2014). On the Diophantine equation 19^x+2^y=z^2. International Journal of Contemporary Mathematical Sciences, 9(4), 159-162. doi: 10.12988/ijcms.2014.418