Non-Existence of Non-Negative Integer Solutions of the Diophantine Equation a^x+b^y=z^2
Main Article Content
Abstract
Let and
be positive integers. In this paper, we show that if there exists a prime
where
such that
and
, then the Diophantine equation
has no non-negative integer solution.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The Journal of Science and Science Education (JSSE) retain the right of all articles published in JSSE. The coresponding author or the authorized person on behalf of the authors must send the complete Copyright Transfer Form to JSSE before any article get published in JSSE.
Copyright Transfer Form
The JSSE request the coresponding author or the authorized person on behalf of the authors upload the manuscript under the together with the Copyright Transfer Form under the supplementary data. The guidline for uploading both manuscript and Copyright Transfer Form is shown below:
1. Upload the manuscript in the sub-menu, Article Component > Article Text.
2. Upload the the Copyright Transfer Form in the sub-menu, Article Component > Other.
Download Copyright Transfer Form
References
Acu, D. (2007). On a Diophantine equation. General Mathematics, 15(4), 145-148.
Aggarwal, S. and Kumar, S. (2021a). On the exponential Diophantine equation (19^2m )+(6γ+1)^n=ρ^2.
International Journal of Research and Innovation in Applied Science, 6(3), 128 – 130.
Aggarwal, S. and Kumar, S. (2021b). On the exponential Diophantine equation (13^2m )+(6^(r+1)+1)^n=ρ^2.
International Journal of Latest Technology in Engineering, Management & Applied Science, 10(3), 1 – 3.
Aggarwal, S. and Kumar, S. (2021c). On the exponential Diophantine equation (13^2m )+(6r+1)^n=z^2.
Journal of Scientific Research, 13(3), 845-849. doi: 10.3329/jsr.v13i3.52611
Aggarwal, S. and Kumar, S. (2021d). On the exponential Diophantine equation (2^(2m+1)-1)+(6r+1)^n=
z^2. International Journal of Research and Innovation in Applied Science, 6(4), 49 – 51.
Aggarwal, S. and Sharma, N. (2020). On the non-linear Diophantine equation 379^x+397^y=z^2. Open Journal of Mathematical Sciences, 4(1), 397 – 399. doi: 10.30538/oms2020.0129
Asthana, S. and Singh, M.M. (2017). On the Diophantine equation 3^x+13^y=z^2. International Journal of Pure and Applied Mathematics, 114(2), 301 – 304. doi: 10.12732/ijpam.v.114i2.12
Burton, D. M. (2007). Elementary Number Theory, 6th ed., McGraw-Hill, Singapore.
Chotchaisthit, S. (2012). On the Diophantine equation 4^x+p^y=z^2 where p is a prime number. American Journal of Mathematics and Sciences, 1(1), 191 – 193.
Gupta, D. and Kumar, S. (2020). On the exponential Diophantine equationa^u+(a+5b)^v=c^2w. International Journal of Interdisciplinary Global Studies, 14(4), 233 – 236.
Kumar, S. and Aggarwal, S. (2021). On the exponential Diophantine equation 439^p+457^q=r^2. Journal of
Emerging Technologies and Innovative Research, 8(3), 2357 – 2361.
Kumar, A., Chaudhary, L. and Aggarwal, S. (2020). On the exponential Diophantine equation 601^p+619^q=r^2. International Journal of Interdisciplinary Global Studies, 14(4), 29 – 30.
Paisal, K. and Chayapham, P. (2021). On exponential Diophantine equation 17^x+83^y=z^2 and 29^x+71^y=z^2. Journal of Physics, 2070, 1 – 3. doi: 10.1088/1742-6596/2070/1/012015
Redmond, D. (1996). Number theory: an introduction, Marcel Dekker, Inc., New York.
Sroysang, B. (2014a). On two Diophantine equations 7^x+19^y=z^2 and7^x+91^y=z^2. International Journal of Pure and Applied Mathematics, 92(1), 113 – 116. doi: 10.12732/ijpam.v92i1.10
Sroysang, B. (2014b). On the Diophantine equation 7^x+31^y=z^2. International Journal of Pure and Applied Mathematics, 92(1), 109 – 112. doi: 10.12732/ijpam.v92i1.9
Suvarnamani, A., Singta, A. and Chotchaisthit, S. (2011). On two Diophantine equations 4^x+7^y=z^2 and 4^x+11^y=z^2. Science and Technology RMUTT Journal, 1(1), 25 - 28.