- On finite-dimensional simple Poisson module on a certain Poisson algebra by using the specific Lie Structure method on Poisson maximal ideals -

Main Article Content

Nongkhran Sasom
Kanokporn Changtong

Abstract

We study a Poisson algebra A=C[x,y,z]  with three generators and having three relations the same as  the relations of  T  in Changtong et al. (2018). We classify the finite-dimensional simple Poisson modules over  A by considering its Lie structure J/J2  ,  where  J is a Poisson maximal ideal of A. We show that there are only five Poisson maximal ideals  Ji ,i=1,2,...,5. There are five d-dimensional  simple Poisson module annihilated by Ji,i=1,2,...,5, for each positive integer d>=1.

Article Details

How to Cite
Sasom, N., & Changtong, K. . (2023). - On finite-dimensional simple Poisson module on a certain Poisson algebra by using the specific Lie Structure method on Poisson maximal ideals: -. Journal of Science and Science Education (JSSE), 6(1), 40–49. https://doi.org/10.14456/jsse.2023.5
Section
Research Articles in Science

References

Changtong, K., Bojaras, R. Sasom, N., and, Saenkarun, S. (2018). On finite-dimensional simple Poisson modules of a certain Poisson

algebra. J. of Sci. & Technology, Ubon Ratchathani University, 20(2), 60-68.

Changtong, K. and Sasom, N. (2018). Poisson Maximal ideals and the Finite-dimensional Simple Poisson Modules of a Certain Poisson

Algebra. KKU Science Journal, 46(3), 606-613.

Dixmier, J. (1996). Enveloping Algebras. Grad. Stud. Math. 11. Providence, RI: American Mathematical Society.

Erdmann, K. and Wildon, M. J. (2006). Introduction to Lie Algebras. London: Springer.

Farkas, D. R. (2000). Modules for Poisson algebras, Communications in Algebra, 28(7), 3293-3306. Hall, B. (2015). Lie groups, Lie Algebras and Lie Algebras and Representation (2nd Ed), Grad. Texts in

Maths 222, New York: Springer-Verlag.

Humphreys, J. E. (1972). Introduction to Lie algebras and Representation Theory. Grad. Texts in Maths

, New York: Springer-Verla. Jordan D. A. (2010). Finite-dimensional simple Poisson modules. Algebras and Representation Theory, 13,

-101. Oh, S. O. (1999). Poisson enveloping algebras. Communications in Algebra, 27, 2181–2186. Sasom, N. (2006). Reversible skew Laurent polynomial rings, rings of invariants and related rings. PhD

Thesis, Sheffield: University of Sheffield.