Risk Factor Affecting Thai Sweet Corn Supply Chain Performance for Export: Case Study of Upper Northern Thailand

Main Article Content

Thagoon Siriyod
Natthanan Thitiyapramote
Sukasem Langkhunsean
Chairerk Tantitecha
Nalinthip Kongkham5
Tanaworakit Oranatanaporn

Abstract

Thailand has high potential for agricultural production and export. Especially, in the norther area, there were the highest sweet corn production and manufacture in Thailand from 2016-2018; however, since 2019, they were decreasing. Hence, the research about risk factors affecting Thai sweet corn supply chain for export is necessary. The research objectives are 1) to study risk factors affecting Thai sweet corn supply chain performance and 2) to test the differences of the factors affecting Thai sweet corn supply chain performance’s impact. The data were collected from 200 Thai sweet corn entrepreneurs in 8 Thai upper northern provinces from purposive sampling by questionnaires analyzed by Partial Least Square Structural Equation Modeling: PLS-SEM with SmartPLS 3. The results significantly showed the atmospheric risks, the biological and environmental risks, the logistics and infrastructural risks, the supply risks, and the demand risks respectively. The results from the research can be further beneficial to develop policy, innovation and technology to solve risks and problems in Thai sweet corn supply chain for enhancing export competitiveness accurately and effectively.

Article Details

How to Cite
Siriyod, T., Thitiyapramote, N. ., Langkhunsean, S. ., Tantitecha , C. ., Kongkham5 , N. ., & Oranatanaporn, T. . (2023). Risk Factor Affecting Thai Sweet Corn Supply Chain Performance for Export: Case Study of Upper Northern Thailand. Kasetsart Applied Business Journal, 17(27), 21–43. https://doi.org/10.14456/kab.2023.8
Section
Research article

References

ธนกร ราชพิลา และ สิทธา เจนศิริศักดิ์. (2555). สายโซ่อุปทานข้าวโพดหวาน. วารสารมหาวิทยาลัยราชภัฏสกลนคร, 4(8), 1-22.

สำนักงานเศรษฐกิจการเกษตร. (2564). ข้าวโพดหวาน: ร้อยละและปริมาณผลผลิตรายเดือน ระดับประเทศ ภาค และจังหวัด ปี 2563. https://oae.go.th/assets/portals/1/fileups/prcaidata/files/product%2063.pdf

แสงระวี รุ่งวิถี และ ปณัทพร เรืองเชิงชุม. (2561). แนวทางการจัดการความเสี่ยงที่ส่งผลต่อต้นทุนการจัดการสินค้าคงคลังของร้านขายยา CDE ในจังหวัดขอนแก่น. วารสารเกษตรศาสตร์ธุรกิจประยุกต์, 11(15), 46–62.

Aghazadeh, S. (2004). Improving logistics operations across the food industry supply chain. International Journal of Contemporary Hospitality Management, 16(4), 263–268. https://doi.org/10.1108/09596110410537423

Aramyan, L., Ondersteijn, C. J., Kooten, O. V., & Lansink, A. O. (2006). Performance indicators in agri-food production chains. Frontis-Wageningen International Nucleus for Strategic Expertise, 15, 47-64.

Cedillo-Campos, M., & Sánchez-Ramírez, C. (2013). Dynamic Self-Assessment of Supply Chains Performance: an Emerging Market Approach. Journal of applied research and technology, 11(3), 338-347. https://doi.org/10.1016/S1665-6423(13)71544-X

Chin, W. W. (1998). The Partial Least Squares Approach to Structural Equation Modeling. Modern methods for business research, 295-336. https://doi.org/10.4324/9781410604385

Chowdhury, R. B., & Moore, G. A. (2017). Floating agriculture: a potential cleaner production technique for climate change adaptation and sustainable community development in Bangladesh. Journal of Cleaner Production, 150, 371-389. https://doi.org/10.1016/j.jclepro.2015.10.060

Diamantopoulos, A., & Winklhofer, H. M. (2001). Index Construction with Formative Indicators: An Alternative to Scale Development. Journal of Marketing Research, 38(2), 269-277.

Dong, M. (2006). Development of supply chain network robustness index. International Journal of Services Operations and Informatics, 1(1/2), 54-66. https://doi.org/10.1504/IJSOI.2006.010189

Fattahi, F., Nookabadi, A. S., & Kadivar, M. (2013). A model for measuring the performance of the meat supply chain. British Food Journal, 115(8), 1090-1111. https://doi.org/10.1108/BFJ-09-2011-0217

Fornell, C., & Larcker, D. F. (1981). Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313

Ge, H., Nolan, J., Gray, R., Goetz, S., & Han, Y. (2016). Supply chain complexity and risk mitigation – A hybrid optimization–simulation model. International Journal of Production Economics. Elsevier, 179, 228–238. https://doi.org/10.1016/j.ijpe.2016.06.014

Godar, J., Suavet, C., Gardner, T. A., Dawkins, E., & Meyfroidt, P. (2016). Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environmental Research Letters, 11(3), 035015. https://doi.org/10.1088/1748-9326/11/3/035015

Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). Performance measures and metrics in a supply chain environment. International journal of operations and production Management, 21(1/2), 71-87. https://doi.org/10.1108/01443570110358468

Hair J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th ed.). Pearson.

Hair J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202

Hair J. F., Sarstedt, M., Hopkins, L., & Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European business review, 26(2), 106-121. https://doi.org/10.1108/EBR-10-2013-0128

Handayati, Y., Simatupang, T. M., & Perdana, T. (2015). Agri-food supply chain coordination: the state-of-the-art and recent developments. Logistics Research, 8(1), 5. https://doi.org/10.1007/s12159-015-0125-4

Hendricks, K. B., & Singhal, V. R. (2005). An empirical analysis of the effect of supply chain disruptions on long-run stock price performance and equity risk of the firm. Production and operations Management, 14(1), 35-52. https://doi.org/10.1111/j.1937-5956.2005.tb00008.x

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382

Hoyle, R. H. (1995). Structural equation modeling: Concepts, issues, and applications (1st ed.). Sage.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Huirne, R., Meuwissen, M., & Asseldonk, M. V. (2007). Importance of whole-farm risk management in agriculture. In Weintraub, A., Romero, C., Bjørndal, T., Epstein, R., Miranda, J. (Eds.), Handbook of Operations Research in Natural Resources. International Series in Operations Research & Management Science (pp. 3-15), vol 99. Springer. https://doi.org/10.1007/978-0-387-71815-6_1

International Trade Centre. (2022). Trade Statistics for International Business Development. Trade Map - List of exporters for the selected product (Vegetables, uncooked or cooked by steaming or boiling in water, frozen). https://www.trademap.org/tradestat/Country_SelProduct_TS.aspx?nvpm=1%7C%7C%7C%7C%7C071040%7C%7C%7C6%7C1%7C1%7C2%7C2%7C1%7C2%7C1%7C1%7C1

Jaffee, S., Siegel, P., & Andrews, C. (2010). Rapid agricultural supply chain risk assessment: A conceptual framework. Agriculture and rural development discussion paper, 47(1), 1-64.

Kern, D., Moser, R., Hartmann, E., & Moder, M. (2012). Supply risk management: model development and empirical analysis. International Journal of Physical Distribution & Logistics Management, 42(1), 60-82. https://doi.org/10.1108/09600031211202472

Leat, P., & Revoredo-Giha, C. (2013). Risk and resilience in agri-food supply chains: the case of the ASDA Pork Link supply chain in Scotland. Supply Chain Management: An International Journal, 18(2), 219–231. https://doi.org/10.1108/13598541311318845

Lee, H. L., & Billington, C. (1993). Material Management in Decentralized Supply Chains. Operations Research, 41(5), 835-847. https://doi.org/10.1287/opre.41.5.835

Lehner, F., & Haas, N. (2010). Knowledge management success factors-proposal of an empirical research. Electronic Journal of Knowledge Management, 8(1), 79-90.

Meuwissen, M. P. M., Velthuis, A. G. J., Hogeveen, H., & Huirne, R. B. M. (2003). Traceability and certification in meat supply chain. Journal of Agribusiness, 21(2), 167–181. https://doi.org/10.22004/ag.econ.14666

Murphy, P. R., & Poist, R. F. (2002). Socially responsible logistics: an exploratory study. Transportation Journal, 41(4), 23-35. http://www.jstor.org/stable/20713503

Nahmias, S. (2011). Perishable Inventory Systems. International Series in Operations Research and Management Science (1st ed.). Springer. https://doi.org/10.1007/978-1-4419-7999-5

Negi, S., & Anand, N. (2019). Wholesalers perspectives on mango supply chain efficiency in India. Journal of Agribusiness in Developing and Emerging Economies, 9(2), 175–200. https://doi.org/10.1108/JADEE-02-2018-0032

Nyamah, E. Y., Feng, Y., Daniel, O. S., & Joseph, N. B. (2014). Agricultural supply chain risk identification-a case finding from Ghana. Journal of management and strategy, 5(2), 31. https://doi.org/10.5430/jms.v5n2p31

Nyamah, E. Y., Jiang, Y., Feng, Y., & Enchill, E. (2017). Agri-food supply chain performance: an empirical impact of risk. Management Decision, 55(5), 872–891. https://doi.org/10.1108/MD-01-2016-0049

Oelviani, R., Sahara, D., & Praptana R. H. (2021). Corn-seed Technology: A Study of a New Technology Introduce to Farmer Using Importance Performance Analysis. E3S Web of Conferences. 232, 03005. https://doi.org/10.1051/e3sconf/202123203005

Ortega, D. L., & Tschirley, D. L. (2017). Demand for food safety in emerging and developing countries: a research agenda for Asia and Sub-Saharan Africa. Journal of Agribusiness in Developing and Emerging Economies, 7(1), 21-34. https://doi.org/10.1108/JADEE-12-2014-0045

Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research. Journal of Management, 12(4), 531–544. https://doi.org/10.1177/014920638601200408

Reytar, K., Hanson, C., & Henninger, N. (2014). Indicators of Sustainable Agriculture: A Scoping Analysis. World Resources Institute. https://www.wri.org/research/indicators-sustainable-agriculture-scoping-analysis

Ringle, C. M., Sarstedt, M., & Schlittgen, R. (2014). Genetic algorithm segmentation in partial least squares structural equation modeling. OR Spectrum, 36(1), 251-276

Samvedi, A., Jain, V., & Chan, F. T. S. (2013). Quantifying risks in a supply chain through integration of fuzzy AHP and fuzzy TOPSIS. International Journal of Production Research, 51(8), 2433-2442. https://doi.org/10.1080/00207543.2012.741330

Sarstedt, M., Ringle, C. M., Smith, D., Reams, R., & Hair, J. F. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. https://doi.org/10.1016/j.jfbs.2014.01.002

Schmitt, A. J., & Snyder, L. V. (2012). Infinite-horizon models for inventory control under yield uncertainty and disruptions. Computers and Operations Research, 39(4), 850-862. https://doi.org/10.1016/j.cor.2010.08.004

Shwedel, K. (2007). Value chain financing a strategy for an orderly competitive integrated market. In R. Quirós (Eds.), Agricultural Value Chain Finance. Academia de Centroamérica. https://www.fao.org/docrep/pdf/010/i0016e/i0016e00.pdf

Smith, B. G. (2008). Developing sustainable food supply chains. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 849-861. https://doi.org/10.1098/rstb.2007.2187

Tummala, R., & Schoenherr, T. (2011). Assessing and managing risks using the Supply Chain Risk Management Process (SCRMP). Supply Chain Management: An International Journal, 16(6), 474-483. https://doi.org/10.1108/13598541111171165

Wagner, S. M., & Bode, C. (2008). An Empirical Examination of Supply Chain Performance Along Several Dimension of Risk. Journal of Business Logistics, 29(1), 307-325. https://doi.org/10.1002/j.2158-1592.2008.tb00081.x

Zhong, J. (2019). Biased technical change, factor substitution, and carbon emissions efficiency in China. Sustainability, 11(4), 955. https://doi.org/10.3390/su11040955