Students’ Creative Problem Solving in Mathematics Classroom Using Lesson Study and Open Approach
Main Article Content
Abstract
This research aims to explore the creative problem-solving abilities of students in a mathematics classroom using open-ended classroom instruction and methods. Based on the analysis of protocols, methods, and creative problem-solving frameworks synthesized by the researcher, the target group consists of fourth-grade students from Bung Niam Bung Krai Nun Tha Hin School, Khon Kaen Province, in the second semester of the academic year 2022. The study includes 21 students and employs a qualitative research approach. The research tools utilized include: (1) Lesson plans employing open-ended teaching methods, totaling 10 plans. (2) Field observation forms. (3) Frameworks for data analysis involving protocol analysis and analytical discourse.
The research found that students demonstrate creative problem-solving behaviors following a problem-solving framework with four steps: (1) Problem Understanding: Students read and understand the problem, engage in discussions, exchange ideas, compare areas, calculate dimensions, and utilize measurement units to grasp the meaning of the problem situation and find problem-solving strategies. (2) Planning: Students comprehend the problem situation, attempt to find comparative methods, calculate dimensions and areas, and summarize methods to use as problem-solving guidelines. (3) Problem Solving Process: Students execute the plan, use various comparison methods including direct comparison by overlapping fabrics and indirect comparison by placing fabrics on equally-sized tables and observing the excess area, calculate dimensions and areas, create informal measurement units by creating equally-sized square grids and counting grid squares to indicate area size. When the prepared problem-solving plan fails, students devise new problem-solving strategies until successful. It was found that students exhibited 45 different problem-solving methods, and in terms of flexibility, they grouped similar problem-solving methods, discovering 24 concepts. Regarding originality, they found 11 different concepts. (4) Evaluation: Students consider the logical reasoning
of area comparison, dimensions, and area calculation accuracy, and appropriateness of unit filling. It is a self-aware process. When considering creative problem-solving ideas in terms of aesthetics, students can present detailed comparison methods, dimension calculations, and detailed area size presentations, discovering 39 concepts.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
กระทรวงศึกษาธิการ. ตัวชี้วัดและสาระการเรียนรู้แกนกลางกลุ่มสาระการเรียนรู้ คณิตศาสตร์(ฉบับปรับปรุง พ.ศ. ๒๕๖๐) ตามหลักสูตรแกนกลางการศึกษาขั้นพื้นฐาน พุทธศักราช ๒๕๕๑. กรุงเทพมหานคร: โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย, ๒๕๖๐.
ไมตรี อินทร์ประสิทธิ์. การปฏิรูปการเรียนรู้คณิตศาสตร์ในโรงเรียนโดยเน้นกระบวนการทางคณิตศาสตร์. ขอนแก่น: ขอนแก่นการพิมพ์, ๒๕๔๖.
__________. กระบวนการแก้ปัญหาในคณิตศาสตร์ระดับโรงเรียน. ขอนแก่น: เพ็ญพริ้นติ้ง, ๒๕๕๗.
__________.“การสอนโดยใช้วิธีการแบบเปิดในชั้นเรียนคณิตศาสตร์ของญี่ปุ่น”. KKU Journal of Mathematics Education. ปีที่ ๑ ฉบับที่ ๑ (๒๕๔๗) : ๑-๒๘.
Guilford, J.P. The nature of human intelligence. New York: McGraw–Hill BookCompany, 1967.
National Council of Teacher of Mathematics (NCTM). Principles and standards for School Mathematics: Discussion Dreft. Reston, Verginia: NCTM, 1998.
Nohda, N. “Teaching by Open-Approach Method in Japanese Mathematics Classroom”. Proceeding of the 24th Conference of the International Group for the Psychology of Mathematics Education (PME 24), 2000.
Treffinger, Isaksen, Doval. Creative problem solving (CPS Version 6.1) A contemporary framework for managing change. [Online]. available: http://www.creativelearning.com/index.htm [22 September 2020].