Analyzing the Evolution of Personal Knowledge Management and its Integration With Artificial Intelligence Technology: A Bibliometric Analysis

Main Article Content

Chutima Waisurasingha
Chattichai Waisurasingha

Abstract

This research aims to present the knowledge structure, directions, and trends of research in personal knowledge management (PKM) and its integration with artificial intelligence (AI). The study employed bibliometric analysis of journal articles, proceedings, book chapters, and books on PKM and AI integration published in the Scopus database between 1988 and February 2024. Keyword analysis and co-word analysis were utilized to interpret the data. The findings reveal three main concepts: knowledge management, artificial intelligence, and the science and technologies involved in integrating PKM and AI. The knowledge structure of PKM and AI research is divided into five clusters: knowledge worker development, knowledge sharing, artificial intelligence, knowledge management systems, and information management. The research also identifies AI as a promising area for supporting PKM, particularly in knowledge acquisition, sharing and transfer.

Article Details

How to Cite
Waisurasingha, C., & ไวยสุระสิงห์ ช. (2024). Analyzing the Evolution of Personal Knowledge Management and its Integration With Artificial Intelligence Technology: A Bibliometric Analysis. Journal of Information and Learning [JIL], 35(2), 128–141. retrieved from https://so04.tci-thaijo.org/index.php/jil/article/view/271656
Section
Research Article

References

Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107-133. https://doi.org/10.2307/3250961

Alavi, M., Leidner, D. E., & Mousavi, R. (2024). A knowledge management perspective of generative artificial intelligence. Journal of the Association for Information Systems, 25(1), 1-12. https://doi.org/10.17705/1jais.00859

Avancini, H., & Straccia, U. (2005). User recommendation for collaborative and personalised digital archives. International Journal of Web Based Communities, 1(2), 163-175. https://doi.org/10.1504/IJWBC.2005.006061

Cheong, R. K. F., & Tsui, E. (2010). The roles and values of personal knowledge management: An exploratory study. VINE, 40(2), 204-227. https://doi.org/10.1108/03055721011050686

Chowdhury, S., Budhwar, P., Dey, P.K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. Journal of Business Research, 144, 31-49. https://doi.org/10.1016/j.jbusres.2022.01.069

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

Gasik, S. (2011). A model of project knowledge management. Project Management Journal, 42(3), 23-44. https://doi.org/10.1002/pmj.20239

Google DeepMind. (n.d.). Technology AlphaGo. https://deepmind.google/technologies/alphago

Gorman, G. E., & Pauleen, D. J. (2011). The nature and value of personal knowledge management. Exploring the linkages between personal knowledge management and organizational learning. In D. J. Pauleen, & G. E. Gorman (Eds.), Personal knowledge management: Individual, organizational and social perspectives (pp. 1-15). Routledge. https://doi.org/10.4324/9781315600154

Heaven, W. D. (2020). OpenAI’s new language generator GPT-3 is shockingly good—and completely mindless. MIT Technology Review. https://www.technologyreview.com/2020/07/20/1005454/openai-machine-learning-language-generator-gpt-3-nlp

Hu, X., Tian, Y., Nagato, K., Nakao, M., & Liu, A. (2023). Opportunities and challenges of ChatGPT for design knowledge management. Procedia CIRP, 119, 21-28. https://doi.org/10.1016/j.procir.2023.05.001

Jarrahi, M. H., Reynolds, R., & Eshraghi, A. (2021). Personal knowledge management and enactment of personal knowledge infrastructures as shadow IT. Information and Learning Sciences, 122(1/2), 17-44. https://doi.org/10.1108/ILS-11-2019-0120

Khasseh, A. A., Soheili, F., Moghaddam, H. S., & Chelak, A. M. (2017). Intellectual structure of knowledge in iMetrics: A co-word analysis. Information Processing and Management, 53(3), 705-720. https://doi.org/10.1016/j.ipm.2017.02.001

López-Quintero, J. F., Cueva Lovelle, J. M., González Crespo, R., & García-Díaz, V. (2018). A personal knowledge management metamodel based on semantic analysis and social information. Soft Computing, 22(6), 1845-1854. https://doi.org/10.1007/s00500-016-2437-y

Manesh, M. F., Pellegrini, M. M., Marzi, G., & Dabic, M. (2021). Knowledge management in the fourth industrial revolution: Mapping the literature and sng future avenues. IEEE Transactions on Engineering Management, 68(1), 289-300. https://doi.org/10.1109/TEM.2019.2963489

Nazeer, S., Sumbal, M.S., Liu, G., Munir, H., & Tsui, E. (2023). The next big thing: Role of ChatGPT in personal knowledge management challenges and opportunities for knowledge workers across diverse disciplines. Global Knowledge, Memory and Communication. https://doi.org/10.1108/GKMC-07-2023-0246

Nemati, H. R., Steiger, D. M., Iyer, L. S., & Herschel, R. T. (2002). Knowledge warehouse: An architectural integration of knowledge management, decision support, artificial intelligence and data warehousing. Decision Support Systems, 33(2), 143-161. https://doi.org/10.1016/S0167-9236(01)00141-5

Nonaka, I., & Takeuchi, H. (1995). The knowledge creating company. Oxford University.

Parthiban, K., Pandey, D., & Pandey, B.K. (2021). Impact of SARS-CoV-2 in online education, predicting and contrasting mental stress of young students: A machine learning approach. Augmented Human Research, 6, Article 10. https://doi.org/10.1007/s41133-021-00048-0

Razmerita, L., Brun, A., & Nabeth, T. (2022). Collaboration in the machine age: Trustworthy human-AI collaboration. In M. Virvou, G.A. Tsihrintzis, & L.C. Jain (Eds.), Advances in Selected artificial intelligence areas: Learning and analytics in intelligent systems (Vol. 24, pp. 333-356). Springer. https://doi.org/10.1007/978-3-030-93052-3_14

Sumbal, M. S., & Amber, Q. (2024). ChatGPT: A game changer for knowledge management in organizations. Kybernetes. https://doi.org/10.1108/K-06-2023-1126

Uta, M., Felfernig, A., Le, V., Tran, T.N.T., Garber, D., Lubos, S., & Burgstaller, T. (2024). Knowledge-based recommender systems: Overview and research directions. Frontiers in Big Data, 7, Article 1304439. https://doi.org/10.3389/fdata.2024.1304439

Wang, X., Lu, J., Song, Z., Zhou, Y., Liu, T., & Zhang, D. (2022). From past to future: Bibliometric analysis of global research productivity on nomogram. Frontiers in Public Health, 10, Article 997713. https://doi.org/10.3389/fpubh.2022.997713

Wiig, K. M. (2011). The importance of personal knowledge management in the knowledge society. In D. J. Pauleen, & G. E., Gorman (Eds.), Personal knowledge management: Individual, organizational and social perspectives (pp. 228-262). Routledge. https://doi.org/10.4324/9781315600154