Implementing Sentiment Analysis to Enhance Service Quality in Luxury Hospitals
Main Article Content
บทคัดย่อ
This study explores the potential of sentiment analysis to enhance service quality in luxury hospitals by analyzing customer feedback. It focuses on hospitals in Thailand that adhere to Joint Commission International (JCI) standards. The research utilizes three machine learning algorithms—Naive Bayes, Decision Tree, and K-Nearest Neighbor—to classify customer sentiments from online reviews. The results demonstrate that the Decision Tree algorithm outperforms the others with an accuracy of 81.8%. Field experiments with industry experts further validate the model, showing its utility in real-world applications. The findings suggest that integrating sentiment analysis into hospital management systems can streamline feedback monitoring, improve responsiveness, and maintain high service standards, ultimately contributing to better patient satisfaction and compliance with international accreditation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of Information and Learning ดำเนินการโดยสำนักวิทยบริการ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี บทความที่ได้รับการตีพิมพ์ในวารสารได้รับความคุ้มครองตามกฎหมายลิขสิทธิ์ โดยเจ้าของลิขสิทธิ์จะมีสิทธิในการทำซ้ำ ดัดแปลง และเผยแพร่งานบทความ ทั้งรูปแบบอิเล็กทรอนิกส์ การทำฉบับสำเนา การแปล และการผลิตซ้ำในรูปแบบต่างๆ ลิขสิทธิ์บทความเป็นของผู้เขียนและสำนักวิทยบริการ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี วารสารฯ ขอสงวนสิทธิ์ในการพิจารณาตีพิมพ์ตามความเหมาะสม รวมทั้งการตรวจทานแก้ไข การปรับข้อความ หรือขัดเกลาภาษาให้ถูกต้องตามเกณฑ์ที่กำหนด สำหรับผลการวิจัยและความคิดเห็นที่ปรากฏในบทความถือเป็นความคิดเห็นและอยู่ในความรับผิดชอบของผู้เขียน
References
Afifi, I., & Amini, A. (2018). Factors affecting relationship marketing in creating customer loyalty in the hospital services business. ASEAN Marketing Journal, 10(2), 91-108. https://scholarhub.ui.ac.id/cgi/viewcontent.cgi?article=1095&context=amj
Alwateer, M., Almars, A. M., Elhosseini, M. A., Areed, K. N., Haikal, A. Y., & Badawy, M. (2021). Ambient healthcare approach with hybrid whale optimization algorithm and Naïve Bayes classifier. Sensors, 21(13), 4579:1-4579:27. https://doi.org/10.3390/s21134579
Anam, M. K., Fitri, T. A., Agustin, A., Lusiana, L., Firdaus, M. B., & Nurhuda, A. T. (2023). Sentiment analysis for online learning using the lexicon-based method and the support vector machine algorithm. ILKOM Jurnal Ilmiah, 15(2), 290-302. https://doi.org/10.33096/ilkom.v15i2.1590.290-302
Asghar, M., Ahmad, S., Qasim, M., Zahra, S., & Kundi, F. (2016). SentiHealth: creating health-related sentiment lexicon using hybrid approach. SpringerPlus, 5, Article 1139. https://doi.org/10.1186/s40064-016-2809-x
Asl, I. M., Nasiri, T., Shams, L., & Hashemidehaghi, Z. (2014). Relationship between health care organization management standards of the joint commission international and health tourism in selected hospitals in Tehran. International Journal of Travel Medicine & Global Health, 2(1), 19-22. https://www.ijtmgh.com/article_33268_5b818dc2417025e2f1e73ccd1f9820a8.pdf
Asl, I. M., Nasiri, T., Dopeykar, N., Shams, L. (2015). Observance of the patient-oriented standards of joint commission international and its relation to attracting of health tourists in selected hospitals in Tehran, Iran. Journal of Payavard Salamat, 9(2), 192-202. https://payavard.tums.ac.ir/article-1-5719-en.html
Bandiera, O., Barankay, I., & Rasul, I. (2011). Field experiments with firms. Journal of Economic Perspectives, 25(3), 63-82. https://doi.org/10.1257/jep.25.3.63
Battisti, J. E. Y. (2017). Field experiments: Design, analysis and interpretation. RAE-Revista de Administração de Empresas, 57(4), 410-411. https://periodicos.fgv.br/rae/article/view/71365
Botta, A., Mohini, P. V., Nooka Raju, A., & Balaji, C. (2024, April 9-10). Deep Learning for sentiment analysis in financial markets [Conference Session]. 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), Jamshedpur, India. https://doi.org/10.1109/ICRTCST61793.2024.10578359
Brutus, J. P. (2023, January 16). What can hospitals learn from luxury hotels? KevinMD.com. https://www.kevinmd.com/2023/01/what-can-hospitals-learn-from-luxury-hotels.html
Bumrungrad international hospital receives Its 7th joint commission international (JCI) re-accreditation. (2023, January 15). Contify Life Science News. https://www.bumrungrad.com/en/blog-news/7th-joint-commission-international-jci-re-accreditation
Campra, M., Riva, P., Oricchio, G., & Brescia, V. (2021). Association between patient outcomes and joint commission international (JCI) accreditation in Italy: an observational study. Quality Access to Success, 22(181), 93-100. https://iris.uniupo.it/retrieve/e163b890-224a-c12c-e053-d805fe0a7f21/QAS_Vol.22_No.181_April.2021_p93-100%20%281%29.pdf
Cece, S., & Köse, İ. (2022). Comparative analysis of joint commission international and healthcare information and management systems-electronic medical record adoption model measurement models using text mining. Journal of Health & Nursing Management, 9(3), 371-382. https://doi.org/10.54304/SHYD.2022.37801
Chakrapani, K., Kempanna, M., Safa, M. I., Kavitha, T., Ramachandran, M., Bhaskar, V., & Kumar, A. (2023). An enhanced exploration of sentimental analysis in health care. Wireless Personal Communications, 128(2), 901-922. https://doi.org/10.1007/s11277-022-09981-8
Chu, W. W. (2014). Data mining and knowledge discovery for big data: Methodologies, challenge and opportunities. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40837-3
Cooke, M., Richards, J., Tjondronegoro, D., Raj Chakraborty, P., Jauncey-Cooke, J., Andresen, E., Theodoros, J., Paterson, R., Schults, J., Raithatha, B., Wilson, S., & Alcock, M. (2021). myPainPal: Co-creation of a mHealth app for the management of chronic pain in young people. Informatics for Health & Social Care, 46(3), 291-305. https://doi.org/10.1080/17538157.2021.1892697
Dangi, D., Dixit, D. K., & Bhagat, A. (2022). Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools & Applications, 81(29), 42261-42283. https://doi.org/10.1007/s11042-022-13492-w
Denecke, K., & Deng, Y. (2015). Sentiment analysis in medical settings: New opportunities and challenges. Artificial Intelligence In Medicine, 64(1), 17-27. https://doi.org/10.1016/j.artmed.2015.03.006
Enrico, C., Wendy, R., Piyush, M., Sandeep, R., Ville-Petteri, M., Pieta, B., Markus, W., Eva, W., Saba, A., Aaron, C., & Blair, K. (2021). Evaluation framework to guide implementation of AI systems into healthcare settings. BMJ Health & Care Informatics, 28(1), Article e100444. https://doi.org/10.1136/bmjhci-2021-100444
Fahd, K., Parvin, S., & Souza-Daw D. A. (2021, November 24-26). A framework for Real-time sentiment analysis of big data generated by social media platform [Conference session]. The 31st International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia. https://doi.org/10.1109/ITNAC53136.2021.9652148
Fujino, A., Isozaki, H., & Suzuki, J. (2008, January 7-12). Multi-label text categorization with model combination based on F1-score maximization [Conference session]. Third International Joint Conference on Natural Language Processing: Volume-II, Hyderabad, India. https://aclanthology.org/I08-2116.pdf
Gill, K. S., Anand, V., & Gupta, R. (2023, April 27-29). Foetal health classification using input dataset and fine tuning it using k-nearest neighbour, naïve bayes and decision tree classifier [Conference session]. 1st International Conference on Advances in Electrical, Electronics and Computational Intelligence (ICAEECI), Tiruchengode, India, https://doi.org/10.1109/ICAEECI58247.2023.10370853
Goeuriot, L., Na, J. C., Kyaing, W. Y. M., Khoo, C., Chang, Y. K., Theng, Y. L., & Kim, J. J. (2012, January 28-30). Sentiment lexicons for health-related opinion mining [Conference session]. 2nd ACM SIGHIT International Health Informatics Symposium (IHI '12), NY, United States. https://doi.org/10.1145/2110363.2110390
Gow, J., George, G., Mutinta, G., Mwamba, S., & Ingombe, L. (2011). Health worker shortages in Zambia: An assessment of government responses. Journal of Public Health Policy, 32(4), 476-488. https://doi.org/10.1057/jphp.2011.41
Hashemi, B., Motamedi, M., Etemad, M., Rahmati, F., Forouzanfar, M. M., & Kaghazchi, F. (2014). An audit of emergency department accreditation based on joint commission international standards (JCI). Emergency, 2(3), 130-133. https://doi.org/10.22037/aaem.v2i3.120
Hayurian, L. A., & Hendrastuty, N. (2024). Comparison of Naïve Bayes algorithm and support vector machine in sentiment analysis of Boycott Israeli products on Twitter. Jurnal Teknik Informatika (Jutif), 5(3), 731-738. https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/1813
He, J., Cang, Y., Wei, C., Wang, H., Xu, Y., & Han, Y. (2024). Application of joint commission international standard combined with 6S management mode in the management of emergency medical equipment. Hong Kong Journal of Emergency Medicine, 31(1), 22-27. https://doi.org/10.1002/hkj2.12009
HongFan, Z., Siou-Tang, H., Mark, J. B., Lilly, E., & Herng-Chia, C. (2023). Perceptions of Chinese hospital leaders on joint commission international accreditation: a qualitative study. Frontiers in Public Health, 11, Article 1258600. https://doi.org/10.3389/fpubh.2023.1258600
Hwang, U., Richardson, L., Livote, E., Harris, B., Spencer, N., & Sean Morrison, R. (2008). Emergency department crowding and decreased quality of pain care. Academic Emergency Medicine, 15(12), 1248-1255. https://doi.org/10.1111/j.1553-2712.2008.00267.x
Khaleghparast, S., Maleki, M., Hajianfar, G., Soumari, E., Oveisi, M., Golandouz, H. M., Noohi, F., dehaki, M. G., Golpira, R., Mazloomzadeh, S., Arabian, M., & Kalayinia, S. (2023). Development of a patients' satisfaction analysis system using machine learning and lexicon-based methods. BMC Health Services Research, 23, Article 280. https://doi.org/10.1186/s12913-023-09260-7
Khanam, R., & Sharma, A. (2021, July 2-4). Sentiment analysis using different machine learning techniques for product review [Conference session]. International Conference on Computational Performance Evaluation (ComPE), Shillong, India. https://doi.org/10.1109/ComPE53109.2021.9752004
Kitsirichawanan, T., & Mongkolsawat, D. (2019). Operating room renovation project management: a case study of a joint commission international (JCI) accredited private hospital. Architectural technology and innovation, 34(2), C1-C19. https://so04.tci-thaijo.org/index.php/NAJUA-Arch/article/view/228498
Liang, P. W., & Dai, B. R. (2013, June 1-6). Opinion mining on social media data [Conference session]. IEEE 14th International Conference on Mobile Data Management, Milan, Italy. https://doi.org/10.1109/MDM.2013.73
Liao, Y.-Y., Soltani, E., & Wilkinson, A. (2023). From product to service quality: The role of managerial mindsets. Production Planning & Control, 34(8), 705-726. https://doi.org/10.1080/09537287.2021.1957173
Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press. https://doi.org/10.1017/CBO9780511809071
Menaouer, B., Zahra, A. F., & Mohammed, S. (2022). Multi-class sentiment classification for healthcare tweets using supervised learning techniques. International Journal of Service Science, Management, Engineering, and Technology, 13(1), 1-17. https://doi.org/10.4018/IJSSMET.298669
Mir Habeebullah Shah, Q., & Dr, R. K. S. (2020). Performance of naïve bayes in sentiment analysis of user reviews online. International Journal of Innovative Technology and Exploring Engineering, 10(2), 64-68. https://doi.org/10.35940/ijitee.A8198.1210220
Mogakwe, L. J., Ally, H., & Magobe, N. B. D. (2020). Reasons for non-compliance with quality standards at primary healthcare clinics in Ekurhuleni, South Africa. African Journal of Primary Health Care & Family Medicine, 12(1), 1-9. https://doi.org/10.4102/phcfm.v12i1.2179
Mogakwe, L. J., Magobe, N. B. D., & Ally, H. (2020). Facilitating compliance with quality standards at primary health care clinics through adequate health care resources. Africa Journal of Nursing & Midwifery, 22(1), 1-17. https://doi.org/10.25159/2520-5293/6569
Munyewende, P. O., Rispel, L. C., & Chirwa, T. (2014). Positive practice environments influence job satisfaction of primary health care clinic nursing managers in two South African provinces. Human Resources for Health, 12, Article 27. https://doi.org/10.1186/1478-4491-12-27
Navale, S., Ambale, R., Kapse, V., & Ghadge, S. (2022). To recommend the best hospital in an area using machine learning: Medic aid analysis. International Journal of Research in Engineering, Science and Management, 5(4), 156-158. https://journal.ijresm.com/index.php/ijresm/article/view/1978
Nurfaizah, Hariguna, T., & Romadon, Y. I. (2019). The accuracy comparison of vector support machine and decision tree methods in sentiment analysis. Journal of Physics: Conference Series, 1367, Article 012025. https://doi.org/10.1088/1742-6596/1367/1/012025
Pandesenda, A. I., Yana, R. R., Sukma, E. A., Yahya, A., Widharto, P., & Hidayanto, A. N. (2020, November 19-20). Sentiment analysis of service quality of online healthcare platform using fast large-margin [Conference Session]. International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia. https://doi.org/10.1109/ICIMCIS51567.2020.9354295
Paruchuri, H., Vadlamudi, S., Ahmed, A. A. A., Eid, W., & Donepudi, P. K. (2021). Product reviews sentiment analysis using machine learning: A systematic literature review. Turkish Journal of Physiotherapy Rehabilitation, 32(2), 2361-2367. https://doi.org/10.5281/zenodo.5534344
Pradhan, B., & Panda, P. S. (2023, February 17-18). Long short term memory-based sentiment analysis of healthcare reviews [Conference Session]. International Conference on Ambient Intelligence in Health Care (ICAIHC), Bhubaneswar, India. https://doi.org/10.1109/ICAIHC59020.2023.10431432
Prakash, C. O, Kumar, S. V., Pallavi, Abbas, J. K., Naser, S. J., & Haroon, N. H. (2024, April 4-5). Enhancing natural language processing with deep learning for sentiment analysis [Conference Session]. Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India. https://doi.org/10.1109/ICONSTEM60960.2024.10568829
Rahim, A. I. A., Ibrahim, M. I., Chua, S. L., & Musa, K. I. (2021). Hospital Facebook reviews analysis using a machine learning sentiment analyzer and quality classifier. Healthcare, 9(12), Article 1679. https://doi.org/10.3390/healthcare9121679
Ramjan, S., & Sunkpho, J. (2023). Principles and theories of data mining with RapidMiner. IGI Global. https://doi.org/10.4018/978-1-6684-4730-7
Sharma, S., Pandey, A., Kumar, V., Ohdar, D., Pillai, A. R., & Mahajan, M. (2023, March 24-25). Recent trends in sentiment analysis using different machine learning based models: a short review [Conference session]. 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India. https://doi.org/10.1109/ICAAIC56838.2023.10140954
Shimada, S. L., Petrakis, B. A., Rothendler, J. A., Zhao, S., Feng, H., Fix, G. M., Simon, S. R., Zirkle, M., Ozkaynak, M., Martin, T., Johnson, S. A., Tulu, B., Gordon, H. S., & Woods, S. S. (2017). An analysis of patient-provider secure messaging at two veterans health administration medical centers: message content and resolution through secure messaging. Journal of the American Medical Informatics Association, 24(5), 942-949-949. https://doi.org/10.1093/jamia/ocx021
Streiner, D. L., & Norman, G. R. (2006). “Precision” and “accuracy”: Two terms that are neither. Journal of Clinical Epidemiology, 59(4), 327-330. https://doi.org/10.1016/j.jclinepi.2005.09.005
Tarieh, R. R. A., Zayyat, R., Naoufal, R. N., & Samaha, H. R. (2022). A case study exploring the impact of JCI standards implementation on staff productivity and motivation at the laboratory and blood bank. Health Science Reports, 5, Article e497. https://doi.org/10.1002/hsr2.497
Usman, M., Mujahid, M., Rustam, F., Soriano Flores, E., Vidal Mazón, J. L., de la Torre Díez, I., & Ashraf, I. (2024). Analyzing patients satisfaction level for medical services using twitter data. PeerJ Computer Science, 10, Article e1697. https://doi.org/10.7717/peerj-cs.1697
Xu, Y., Cao, H., Du, W., & Wang, W. (2022). A survey of cross-lingual sentiment analysis: Methodologies, models and evaluations. Data Science and Engineering, 7(3), 279–299. https://doi.org/10.1007/s41019-022-00187-3
Yacouby, R., & Axman, D. (2020, November 20). Probabilistic extension of precision, recall, and F1 score for more thorough evaluation of classification models [Conference Session]. First Workshop on Evaluation and Comparison of NLP Systems. Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.eval4nlp-1.9
Yarimoglu, E., & Ataman, G. (2022). How service quality in hospitals varies based on hospital ownership and demographics: A study on Turkish patients living urban areas. Total Quality Management & Business Excellence, 33(7-8), 777-793. https://doi.org/10.1080/14783363.2021.1890576