The Influence of Live Streaming Technology Acceptance on Online Purchase Decisions of Generation Y Consumers in Thailand
Keywords:
Live Streaming Technology Acceptance, Online Purchase Decisions, Generation Y ConsumersAbstract
This research article aimed to: 1) examine the online purchasing behavior of Generation Y consumers in Thailand, and 2) examine the influence of live streaming technology acceptance affecting online purchasing decisions among Generation Y consumers in Thailand. A quantitative research design was employed, with a sample of 385 Generation Y consumers selected through convenience sampling. The research instrument used was a structured questionnaire. Data were analyzed using descriptive statistics, including mean and standard deviation, Pearson's correlation coefficient, and multiple regression analysis. The findings revealed as follows: 1) the majority of the respondents frequently purchased fashion and apparel products via online and TikTok was the most popular live-streaming platform for shopping. Most live-stream viewing occurred between 6:01 PM and 9:00 PM, with an average viewing duration of 15–30 minutes. 2) Live streaming technology acceptance, specifically in terms of performance expectancy (LPE), social influence (LSI), and facilitating conditions (LFC), had a positive and statistically significant impact on online purchasing decisions (ONPD) at 0.05 level of significance. The results highlighted the critical role of live streaming technology acceptance in shaping online purchasing behavior among Generation Y consumers. These findings offered valuable insights for businesses to refine their digital marketing strategies and leverage live streaming technology to enhance consumer engagement and drive sales.
References
ทรงยศ ใจวงษ์ และคณะ. (2565). ปัจจัยที่ส่งผลต่อพฤติกรรมการยอมรับเทคโนโลยีและการตัดสินใจในการซื้ออุปกรณ์ยูทูปเบอร์ผ่านแพลตฟอร์ม. วารสารนาคบุตรปริทศรรศน์ มหาวิทยาลัยราชภัฏนครศรีธรรมราช, 14(3), 206-219.
นาตาชา เทพอ่อน และคณะ. (2565). ทัศนคติและการยอมรับเทคโนโลยีของผู้บริโภค Generation X และ Y ที่ส่งผลต่อการตัดสินใจใช้บริการแพลตฟอร์มออนไลน์. วารสารเศรษฐศาสตร์และบริหารธุรกิจ มหาวิทยาลัยทักษิณ, 15(2), 127-142.
ปิยะ แก้วบัวดี และคณะ. (2562). ความสัมพันธ์ระหว่างการรับรู้สื่อสังคมออนไลน์กับการตัดสินใจเดินทางท่องเที่ยวของกลุ่มคนเจนเนอเรชั่นวาย. วารสารวิทยาลัยบัณฑิตศึกษาการจัดการ มข. 12(2), 143-162.
ลัดดา ปินตา และคณะ. (2567). ปัจจัยที่มีอิทธิพลต่อการยอมรับเทคโนโลยี E-payment ของประชาชนในเขตภาคเหนือในยุคการขับเคลื่อนเศรษฐกิจดิจิทัลในประเทศไทย. วารสารบริหารธุรกิจเทคโนโลยีมหานคร, 21(1), 80-110.
สำนักบริหารการทะเบียน กรมการปกครอง. (2567). สถิติประชากรทางการทะเบียนราษฎร (รายเดือน) : จำนวนประชากร รายอายุ. เว็บไซต์ระบบสถิติทางการทะเบียน สำนักบริหารการทะเบียน https://stat.bora.dopa.go.th/stat/statnew/stat MONTH/statmonth/#/mainpage
Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Berkup, S. B. (2014). Working with Generations X and Y in Generation Z Period: Management of Different Generations in Business Life. Mediterranean Journal of Social Sciences, 5(19), 218–229. https://doi.org/10.5901/mjss.2014.v5n19p218
Brancheau, J. C., et al. (1996). Key Issues in Information Systems Management: 1994-95 SIM Delphi Results. MIS Quarterly, 20(2), 225-242.
DataReportal. (2025). Digital 2025: Thailand. https://datareportal.com/reports/digital-2025-thailand
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
Dwivedi, Y. K., et al. (2021). Setting the Future of Digital and Social Media Marketing Research: Perspectives and Research Propositions. International Journal of Information Management, 59, 102168. https://doi.org/10.1016/j.ijinfomgt.2020.102168
Electronic Transactions Development Agency (ETDA). (2024). ETDA Reveals Thailand's E-commerce Value in 2023, Reaching 5.96 Trillion Baht, with the Insurance Industry Growing the Most at 31%. https://www.etda.or.th/th/pr-news/Dgt_ecom_survey2024.aspx. [in Thai].
Gujarati, D. N., and Porter, D. C. (2009). Basic Econometrics (5th ed.). McGraw-Hill Education.
Hair, J.F., et al. (2019). Multivariate Data Analysis (8th ed.). Pearson.
Kim, Y., and Woo, J. (2021). The Role of Facilitating Conditions in Users’ Acceptance of Live Streaming Platforms. Journal of Digital Media & Policy, 12(3), 1-16.
Koch, J., et al. (2020). Online Shopping Motives During the COVID-19 Pandemic—Lessons from the Crisis. Sustainability, 12(24), 10247. https://doi.org/10.3390/su122410247
Krejcie, R. V., and Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30(3), 607-610.
Liang, L., et al. (2021). Factors Influencing the Adoption of Live Streaming E-commerce in China. Electronic Commerce Research and Applications, 45, 1010-1018.
LINE for Business. (2024). How Generation Y Uses Digital Platforms for Shopping. https://lineforbusiness.com/th-en/trends-and-insights/generation-business-shopping
Liu, Y., et al. (2019). Investigating Factors Influencing Consumer Satisfaction in Live Streaming E-commerce. Journal of Business Research, 98, 175-185.
Manager Online. (2021). 4 Consumer Trends in 2022. https://mgronline.com/business/detail/9640000125226 [in Thai].
Marinković, V., et al. (2020), The Moderating Effects of Gender on Customer Satisfaction and Continuance Intention in Mobile Commerce: a UTAUT-based Perspective, Technology Analysis and Strategic Management, 32(3), 306–318. https://doi.org/10.1080/09537325.2019.1655537
Nunnally, J. C., and Bernstein, I. H. (1994). Psychometric Theory (3rd ed.). McGraw-Hill.
SCB Economic Intelligence Center (SCB EIC). (2023). Generations in Thailand: A Closer Look at Gen Y. https://www.scbeic.com/en/detail/file/product/276/e1y9el9c4h/Insight_Eng_GenY_2014.pdf
Unai, E., and Uzun, A. M. (2020). Understanding University Students’ Behavioral Intention to use Edmodo through the Lens of an Extended Technology Acceptance Model. British Journal of Educational Technology, 52(2), 619-637.
Venkatesh, V., et al. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478.
Wenwen, G., and Zhen, S. (2024). The Research on the Influence of Social Commerce Characteristics for Consumers' Purchase Intention. Journal of Modern Learning Development, 9(4), 259-277. https://so06.tci-thaijo.org/index.php/jomld/article/view/271475
Xu, Y., et al. (2020). Social Influence and Trust in Live Streaming E-commerce: An Empirical Study in China. Journal of Retailing and Consumer Services, 54, 101-115.
Zhang, M., et al. (2020). The Impact of Live Video Streaming on Online Purchase Intention. Service Industries Journal, 40, 656-681. https://doi.org/10.1080/02642069.2019.1576642
Zhang, X., et al. (2020). How Live Streaming Influences Consumer Purchasing Decisions in E-commerce Platforms. Journal of Retailing and Consumer Services, 53, 101-109.
Zhou, T., et al. (2021). Understanding the Determinants of Live Streaming Purchase Intention in China. Internet Research, 31(4), 1181-1204.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 NEU ACADEMIC AND RESEARCH JOURNAL

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.